• Ahmed, R. et al. Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation—a review. J. Clean. Prod. 242, 118409 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ochedi, F. O., Liu, Y. & Adewuyi, Y. G. State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials. Process Saf. Environ. Prot. 139, 1–25 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rashidi, N. A. & Yusup, S. An overview of activated carbons utilization for the post-combustion carbon dioxide capture. J CO2 Util. 13, 1–16 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X.-Q., Li, W.-C. & Lu, A.-H. Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater. 30(6), 481–501 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hussain, M. et al. Regional and sectoral assessment on climate-change in Pakistan: Social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J. Clean. Prod. 200, 791–808 (2018).

    Article 

    Google Scholar
     

  • Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325(5948), 1652–1654 (2009).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Babar, M. et al. Development of a novel switched packed bed process for cryogenic CO2 capture from natural gas. Process Saf. Environ. Prot. 147, 878–887 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Boetcher, S. K. et al. Direct atmospheric cryogenic carbon capture in cold climates. Carbon Capture Sci. Technol. 2, 100127 (2023).

    Article 

    Google Scholar
     

  • Maqsood, K. et al. Experimental and simulation study on high-pressure VLS cryogenic hybrid network for CO2 capture from highly sour natural gas. Process Saf. Environ. Prot. 150, 36–50 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shen, M. et al. Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review. Sep. Purif. Technol. 25, 121734 (2022).

    Article 

    Google Scholar
     

  • He, G. et al. High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target. Energy Environ. Sci. 12(11), 3305–3312 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X. et al. Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO 2-philic membranes for superior carbon capture. J. Mater. Chem. A 7(28), 16704–16711 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Ultra-selective membrane composed of charge-stabilized fixed carrier and amino acid-based ionic liquid mobile carrier for highly efficient carbon capture. Chem. Eng. J. 453, 139780 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, W. et al. Polydopamine-modified metal–organic framework membrane with enhanced selectivity for carbon capture. Environ. Sci. Technol. 53(7), 3764–3772 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Karami, B. & Ghaemi, A. Cost-effective nanoporous hypercross-linked polymers could drastically promote the CO2 absorption rate in amine-based solvents, improving energy-efficient CO2 capture. Ind. Eng. Chem. Res. 60(7), 3105–3114 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Karami, B., Ghaemi, A. & Shahhosseini, S. Eco-friendly deep eutectic solvents blended with diethanolamine solution for postcombustion CO2 capture. Energy Fuels 36(2), 945–957 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sistla, Y. S. & Khanna, A. CO2 absorption studies in amino acid-anion based ionic liquids. Chem. Eng. J. 273, 268–276 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yan, H. et al. Superbase ionic liquid-based deep eutectic solvents for improving CO2 absorption. ACS Sustain. Chem. Eng. 8(6), 2523–2530 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bai, J. et al. One-pot synthesis of self S-doped porous carbon for efficient CO2 adsorption. Fuel Process. Technol. 244, 107700 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pham, T. D. et al. Molecular basis for the high CO2 adsorption capacity of chabazite zeolites. ChemSusChem 7(11), 3031–3038 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ramezanipour Penchah, H., Ghaemi, A. & Jafari, F. Piperazine-modified activated carbon as a novel adsorbent for CO 2 capture: Modeling and characterization. Environ. Sci. Pollut. Res. 25, 1–10 (2021).


    Google Scholar
     

  • Xue, D.-X. et al. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 135(20), 7660–7667 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Naquash, A. et al. State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives. Renew. Sustain. Energy Rev. 154, 111826 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jin, C. et al. Sawdust wastes-derived porous carbons for CO2 adsorption Part 1 Optimization preparation via orthogonal experiment. Sep. Purif. Technol. 276, 119270 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Leung, D. Y., Caramanna, G. & Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Canevesi, R. L. et al. Pressure swing adsorption for biogas upgrading with carbon molecular sieve. Ind. Eng. Chem. Res. 57(23), 8057–8067 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Karimi, M. et al. Carbon dioxide separation and capture by adsorption: A review. Environ. Chem. Lett. 25, 1–44 (2023).


    Google Scholar
     

  • Lu, T. et al. Synthesis of potassium Bitartrate-derived porous carbon via a facile and self-activating strategy for CO2 adsorption application. Sep. Purif. Technol. 296, 121368 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, J. et al. N, S-containing polycondensate-derived porous carbon materials for superior CO2 adsorption and supercapacitor. Appl. Surf. Sci. 562, 150128 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Rational design of tailored porous carbon-based materials for CO 2 capture. J. Mater. Chem. A 7(37), 20985–21003 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Grand, J. et al. Flexible template-free RHO nanosized zeolite for selective CO2 adsorption. Chem. Mater. 32(14), 5985–5993 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Madhu, J. et al. Comparison of three different structures of zeolites prepared by template-free hydrothermal method and its CO2 adsorption properties. Environ. Res. 214, 113949 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Megías-Sayago, C. et al. CO2 adsorption capacities in zeolites and layered double hydroxide materials. Front. Chem. 7, 551 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghanbari, T., Abnisa, F. & Daud, W. M. A. W. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 707, 135090 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Qasem, N. A., Ben-Mansour, R. & Habib, M. A. An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Appl. Energy 210, 317–326 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Salehi, S. & Anbia, M. High CO2 adsorption capacity and CO2/CH4 selectivity by nanocomposites of MOF-199. Energy Fuels 31(5), 5376–5384 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Choi, S., Drese, J. H. & Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9), 796–854 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sayari, A., Belmabkhout, Y. & Serna-Guerrero, R. Flue gas treatment via CO2 adsorption. Chem. Eng. J. 171(3), 760–774 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Karimi, M. et al. MIL-160 (Al) as a candidate for biogas upgrading and CO2 capture by adsorption processes. Ind. Eng. Chem. Res. 62(12), 5216–5229 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hong, S.-M. et al. Porous carbon based on polyvinylidene fluoride: Enhancement of CO2 adsorption by physical activation. Carbon 99, 354–360 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Meng, F. et al. Study on a nitrogen-doped porous carbon from oil sludge for CO2 adsorption. Fuel 251, 562–571 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deng, S. et al. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem. Eng. J. 253, 46–54 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sevilla, M. et al. Optimization of the pore structure of biomass-based carbons in relation to their use for CO2 capture under low-and high-pressure regimes. ACS Appl. Mater. Interfaces 10(2), 1623–1633 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Prediction of carbon dioxide adsorption via deep learning. Angew. Chemie 131(1), 265–269 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Durá, G. et al. Importance of micropore-mesopore interfaces in carbon dioxide capture by carbon-based materials. Angew. Chemie 128(32), 9319–9323 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sinha, S. K. & Wang, M. C. Artificial neural network prediction models for soil compaction and permeability. Geotech. Geol. Eng. 26, 47–64 (2008).

    Article 

    Google Scholar
     

  • Shen, W. et al. Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO 2 capture. J. Mater. Chem. 21(36), 14036–14040 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Y. et al. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Adv. Energy Mater. 1(4), 678–683 (2011).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Casco, M. E. et al. Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67, 230–235 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Coli, G. M. et al. Inverse design of soft materials via a deep learning–based evolutionary strategy. Sci. Adv. 8(3), 25 (2022).

    Article 

    Google Scholar
     

  • Dong, Y. et al. Inverse design of two-dimensional graphene/h-BN hybrids by a regressional and conditional GAN. Carbon 169, 9–16 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Y. et al. Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. NPJ Comput. Mater. 5(1), 26 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kolbadinejad, S. et al. Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on activated carbon and zeolites using ANN approach. Chem. Eng. Process. Process Intensif. 170, 108662 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dashti, A. et al. Rigorous prognostication and modeling of gas adsorption on activated carbon and Zeolite-5A. J. Environ. Manage. 224, 58–68 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fotoohi, F. et al. Predicting pure and binary gas adsorption on activated carbon with two-dimensional cubic equations of state (2-D EOSs) and artificial neural network (ANN) method. Phys. Chem. Liq. 54(3), 281–302 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Iraji, N. et al. Adsorption of CO2 and SO2 on multi-walled carbon nanotubes: Experimental data and modeling using artificial neural network. J. Particle Sci. Technol. 5(1), 33–45 (2019).

    CAS 

    Google Scholar
     

  • Leperi, K. T. et al. 110th anniversary: Surrogate models based on artificial neural networks to simulate and optimize pressure swing adsorption cycles for CO2 capture. Ind. Eng. Chem. Res. 58(39), 18241–18252 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Meng, M. et al. Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach. Chem. Eng. J. 368, 847–864 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rostami, A. et al. Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm. Egypt. J. Pet. 27(1), 65–73 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kareem, F. A. A. et al. Experimental measurements and modeling of supercritical CO2 adsorption on 13X and 5A zeolites. J. Nat. Gas Sci. Eng. 50, 115–127 (2018).

    Article 

    Google Scholar
     

  • Mashhadimoslem, H. et al. Development of predictive models for activated carbon synthesis from different biomass for CO2 adsorption using artificial neural networks. Ind. Eng. Chem. Res. 60(38), 13950–13966 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Khoshraftar, Z. & Ghaemi, A. Preparation of activated carbon from Entada Africana Guill & Perr for co2 capture: Artificial neural network and isotherm modeling. J. Chem. Pet. Eng. 56(1), 165–180 (2022).

    CAS 

    Google Scholar
     

  • Barki, H., Khaouane, L. & Hanini, S. Modelling of adsorption of methane, nitrogen, carbon dioxide, their binary mixtures, and their ternary mixture on activated carbons using artificial neural network. Kemija Ind. Časopis Kemičara Kemijskih Inženjera Hrvatske 68(7–8), 289–302 (2019).

    CAS 

    Google Scholar
     

  • Torkashvand, A., Ramezanipour Penchah, H. & Ghaemi, A. Exploring of CO2 adsorption behavior by Carbazole-based hypercrosslinked polymeric adsorbent using deep learning and response surface methodology. Int. J. Environ. Sci. Technol. 19(9), 8835–8856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moradi, M. R., RamezanipourPenchah, H. & Ghaemi, A. CO2 capture by benzene-based hypercrosslinked polymer adsorbent: Artificial neural network and response surface methodology. Can. J. Chem. Eng. 20, 20 (2023).


    Google Scholar
     

  • Sevilla, M. & Fuertes, A. B. CO2 adsorption by activated templated carbons. J. Colloid Interface Sci. 366(1), 147–154 (2012).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Hao, G. P. et al. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 22(7), 853–857 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Travis, W., Gadipelli, S. & Guo, Z. Superior CO 2 adsorption from waste coffee ground derived carbons. RSC Adv. 5(37), 29558–29562 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, S.-Y. & Park, S.-J. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Colloid Interface Sci. 389(1), 230–235 (2013).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Sevilla, M. & Fuertes, A. B. Sustainable porous carbons with a superior performance for CO 2 capture. Energy Environ. Sci. 4(5), 1765–1771 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wahby, A. et al. High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem 3(8), 974–981 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ludwinowicz, J. & Jaroniec, M. Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82, 297–303 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Adeniran, B. & Mokaya, R. Low temperature synthesized carbon nanotube superstructures with superior CO 2 and hydrogen storage capacity. J. Mater. Chem. A 3(9), 5148–5161 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Parshetti, G. K., Chowdhury, S. & Balasubramanian, R. Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel 148, 246–254 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Estevez, L. et al. Hierarchically porous carbon materials for CO2 capture: The role of pore structure. Ind. Eng. Chem. Res. 57(4), 1262–1268 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Srinivas, G. et al. Exceptional CO 2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7(1), 335–342 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Singh, G. et al. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 116, 448–455 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hao, G.-P. et al. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc. 133(29), 11378–11388 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Balahmar, N., Al-Jumialy, A. S. & Mokaya, R. Biomass to porous carbon in one step: Directly activated biomass for high performance CO 2 storage. J. Mater. Chem. A 5(24), 12330–12339 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hirst, E. A., Taylor, A. & Mokaya, R. A simple flash carbonization route for conversion of biomass to porous carbons with high CO 2 storage capacity. J. Mater. Chem. A 6(26), 12393–12403 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture. Carbon 143, 531–541 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Choma, J. et al. Highly microporous polymer-based carbons for CO 2 and H 2 adsorption. RSC Adv. 4(28), 14795–14802 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • de Souza, L. K. et al. Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon 65, 334–340 (2013).

    Article 

    Google Scholar
     

  • Park, J. et al. Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation. Energy 158, 9–16 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chem. Eng. J. 360, 250–259 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, X. et al. Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture. Appl. Surf. Sci. 481, 1139–1147 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haffner-Staton, E., Balahmar, N. & Mokaya, R. High yield and high packing density porous carbon for unprecedented CO 2 capture from the first attempt at activation of air-carbonized biomass. J. Mater. Chem. A 4(34), 13324–13335 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Khodabakhshi, S. et al. Interplay between oxygen doping and ultra-microporosity improves the CO2/N2 separation performance of carbons derived from aromatic polycarboxylates. Carbon 173, 989–1002 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Coromina, H. M., Walsh, D. A. & Mokaya, R. Biomass-derived activated carbon with simultaneously enhanced CO 2 uptake for both pre and post combustion capture applications. J. Mater. Chem. A 4(1), 280–289 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mendoza-Castillo, D. I. et al. Insights and pitfalls of artificial neural network modeling of competitive multi-metallic adsorption data. J. Mol. Liq. 251, 15–27 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Izadi, M., Rahimi, M. & Beigzadeh, R. Evaluation of micromixing in helically coiled microreactors using artificial intelligence approaches. Chem. Eng. J. 356, 570–579 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mazloom, M. S. et al. Artificial intelligence based methods for asphaltenes adsorption by nanocomposites: Application of group method of data handling, least squares support vector machine, and artificial neural networks. Nanomaterials 10(5), 890 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mashhadimoslem, H. et al. Machine learning modelling and evaluation of jet fires from natural gas processing, storage, and transport. Can. J. Chem. Eng. 20, 20 (2023).


    Google Scholar
     

  • Pashaei, H., Mashhadimoslem, H. & Ghaemi, A. Modeling and optimization of CO2 mass transfer flux into Pz-KOH-CO2 system using RSM and ANN. Sci. Rep. 13(1), 4011 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mohd Najib, N. A. et al. Artificial neural network (ANN) modelling of palm oil mill effluent (POME) treatment with natural bio-coagulants. Environ. Processes 7(2), 509–535 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, T.-A. et al. On the training algorithms for artificial neural network in predicting the shear strength of deep beams. Complexity 2021, 1–18 (2021).


    Google Scholar
     

  • Gopalakrishnan, K. Effect of training algorithms on neural networks aided pavement diagnosis. Int. J. Eng. Sci. Technol. 2(2), 83–92 (2010).

    Article 

    Google Scholar
     

  • Hosseinzadeh Talaee, P. Multilayer perceptron with different training algorithms for streamflow forecasting. Neural Comput. Appl. 24, 695–703 (2014).

    Article 

    Google Scholar
     

  • Anushka, P., Md, A. H. & Upaka, R. Comparison of different artificial neural network (ANN) training algorithms to predict the atmospheric temperature in Tabuk, Saudi Arabia. Mausam 71(2), 233–244 (2020).

    Article 

    Google Scholar
     

  • Saravanan, A. & Nagarajan, D. P. Performance of ANN in pattern recognition for process improvement using levenberg-marquardt and quasi-newton algorithms. IOSR J. Eng. 3(3), 08–13 (2013).

    Article 

    Google Scholar
     

  • Mukherjee, I. & Routroy, S. Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process. Expert Syst. Appl. 39(3), 2397–2407 (2012).

    Article 

    Google Scholar
     

  • Shi, J. et al. Application of Bayesian regularization artificial neural network in explosion risk analysis of fixed offshore platform. J. Loss Prevention Process Ind. 57, 131–141 (2019).

    Article 

    Google Scholar
     

  • Karimi, M. et al. Smart computing approach for design and scale-up of conical spouted beds with open-sided draft tubes. Particuology 55, 179–190 (2021).

    Article 

    Google Scholar
     

  • Pauletto, P. S., Dotto, G. L. & Salau, N. P. G. Optimal artificial neural network design for simultaneous modeling of multicomponent adsorption. J. Mol. Liq. 320, 114418 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kang, G. et al. Effect of pressure and temperature on CO2/CH4 competitive adsorption on kaolinite by Monte Carlo simulations. Materials 13(12), 2851 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     



  • Source link