• Dobrowolska, D., Bončina, A. & Klumpp, R. Ecology and silviculture of silver fir (Abies alba Mill.): A review. J. For. Res. 22, 326–335 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Barzdajn, W. & Kowalkowski, W. Kolekcja klonów jodły pospolitej (Abies alba Mill.) w Nadleśnictwie Międzylesie. Nauka Przyroda Technol. 1, 1–15 (2007).


    Google Scholar
     

  • Barzdajn, W. A strategy for restitution of silver fir (Abies alba Mill.) in the Sudety Mountains. Sylwan 144, 63–77 (2000).


    Google Scholar
     

  • Barzdajn, W. & Kowalkowski, W. Silver fir (Abies alba Mill.) restitution in the Sudety Mountains—The characteristics of restored trees. For. Lett. 103, 7–16 (2012).


    Google Scholar
     

  • Kowalkowski, W. Adaptacja i wzrost potomstwa drzewostanów jodły pospolitej (Abies alba Mill.) na uprawie testowej w Nadleśnictwie Złotoryja. For. Lett. 104, 67–74 (2012).


    Google Scholar
     

  • Barzdajn, W. & Kowalkowski, W. Przemiana sposobu zagospodarowania lasu na przerębowy na przykładzie jednostki kontrolnej Chełmsko w Nadleśnictwie Kamienna Góra. Sylwan 160, 388–396 (2016).


    Google Scholar
     

  • Behnke-Borowczyk, J., Kowalkowski, W., Kartawik, N., Baranowska, M. & Barzdajn, W. The soil fungal communities in nurseries producing Abies alba. Balt. For. 26, 426 (2020).

    Article 

    Google Scholar
     

  • Wrońska-Pilarek, D. et al. Pollen morphology and variability of Abies alba Mill. genotypes from South-Western Poland. Forests 11, 1125 (2020).

    Article 

    Google Scholar
     

  • Robakowski, P., Łukowski, A., Ye, Z.-P., Kryszewski, A. & Kowalkowski, W. Northern provenances of silver fir differ with acclimation to contrasting light regimes. Forests 13, 1164 (2022).

    Article 

    Google Scholar
     

  • Robakowski, P., Pietrzak, T., Kowalkowski, W. & Małecki, G. Survival, growth and photochemical efficiency of silver fir seedlings produced with different technologies. New For. (Dordr.) 52, 1055–1077 (2021).


    Google Scholar
     

  • Zhu, Y. et al. Biotic and abiotic drivers of the tree growth and mortality trade-off in an old-growth temperate forest. For. Ecol. Manag. 404, 354–360 (2017).

    Article 

    Google Scholar
     

  • Ibáñez, T. S., Wardle, D. A., Gundale, M. J. & Nilsson, M.-C. Effects of soil abiotic and biotic factors on tree seedling regeneration following a boreal forest wildfire. Ecosystems 25, 471–487 (2022).

    Article 

    Google Scholar
     

  • Zlatev, Z. & Lidon, F. C. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir. J. Food Agric. 24, 57–72 (2012).

    Article 

    Google Scholar
     

  • Pickles, B. J., Gorzelak, M. A., Green, D. S., Egger, K. N. & Massicotte, H. B. Host and habitat filtering in seedling root-associated fungal communities: Taxonomic and functional diversity are altered in ‘novel’ soils. Mycorrhiza 25, 517–531 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kasprzyk, W., Baranowska, M., Korzeniewicz, R., Behnke-Borowczyk, J. & Kowalkowski, W. Effect of irrigation dose on powdery mildew incidence and root biomass of sessile oaks (Quercus petraea (Matt.) Liebl.). Plants 11, 1248 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bejarano, M. D., Villar, R., Murillo, A. M. & Quero, J. L. Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil Tillage Res. 110, 108–114 (2010).

    Article 

    Google Scholar
     

  • Banach, J., Skrzyszewska, K. & Świeboda, Ł. Substrate influences the height of one- and two-year-old seedlings of silver fir and European beech growing in polystyrene containers. For. Res. Pap. 74, 117–125 (2013).


    Google Scholar
     

  • Frąc, M., Hannula, S. E., Bełka, M. & Jędryczka, M. Fungal biodiversity and their role in soil health. Front. Microbiol. 9, 707 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, L. O. et al. Light structures phototroph, bacterial and fungal communities at the soil surface. PLoS ONE 8, e69048 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, Y.-C. et al. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain. Sci. Rep. 10, 7198 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menkis, A., Vasiliauskas, R., Taylor, A. F. S., Stenlid, J. & Finlay, R. Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation. Mycorrhiza 16, 33–41 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, 3756 (2020).

    Article 

    Google Scholar
     

  • Prescott, C. E., Rui, Y., Cotrufo, M. F. & Grayston, S. J. Managing plant surplus carbon to generate soil organic matter in regenerative agriculture. J. Soil Water Conserv. 76, 99–104 (2021).

    Article 

    Google Scholar
     

  • Grossnickle, S. C. & Ivetić, V. Root system development and field establishment: Effect of seedling quality. New For. (Dordr.) 53, 1021–1067 (2022).


    Google Scholar
     

  • Szołtyk, G. & Hilszczańska, D. Rewitalizacja gleb w szkółkach leśnych (Centrum Informacyjne Lasów Państwowych, 2003).


    Google Scholar
     

  • Eberhardt, U. et al. Lactarius ectomycorrhizae on Abies alba: Morphological description, molecular characterization, and taxonomic remarks. Mycologia 92, 860–873 (2000).

    Article 

    Google Scholar
     

  • Ishida, T. A., Nara, K. & Hogetsu, T. Host effects on ectomycorrhizal fungal communities: Insight from eight host species in mixed conifer–broadleaf forests. New Phytol. 174, 430–440 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kranabetter, J. M., Durall, D. M. & MacKenzie, W. H. Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19, 99–111 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Argüelles-Moyao, A. & Garibay-Orijel, R. Ectomycorrhizal fungal communities in high mountain conifer forests in central Mexico and their potential use in the assisted migration of Abies religiosa. Mycorrhiza 28, 509–521 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ważny, R. & Kowalski, S. Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stands and larch forecrops. Trees 31, 929–939 (2017).

    Article 

    Google Scholar
     

  • Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E. & Lindahl, B. D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 11, 863–874 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unuk, T. et al. Root-associated fungal communities from two phenologically contrasting silver fir (Abies alba Mill.) groups of trees. Front. Plant Sci. 10, 214 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ważny, R. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Ann. For. Sci. 71, 801–810 (2014).

    Article 

    Google Scholar
     

  • Rudawska, M., Pietras, M., Smutek, I., Strzeliński, P. & Leski, T. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza 26, 57–65 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fehrer, J., Réblová, M., Bambasová, V. & Vohník, M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud. Mycol. 92, 195–225 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedersoo, L. & Smith, M. E. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99 (2013).

    Article 

    Google Scholar
     

  • Perkowski, E. A., Waring, E. F. & Smith, N. G. Root mass carbon costs to acquire nitrogen are determined by nitrogen and light availability in two species with different nitrogen acquisition strategies. J. Exp. Bot. 72, 5766–5776 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stroheker, S., Dubach, V. & Sieber, T. N. Competitiveness of endophytic Phialocephala fortinii s.l.–Acephala applanata strains in Norway spruce roots. Fungal Biol. 122, 345–352 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Reininger, V. & Sieber, T. N. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers. PLoS ONE 7, e42865 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau. Appl. Soil Ecol. 116, 30–41 (2017).

    Article 

    Google Scholar
     

  • López-Bucio, J., Pelagio-Flores, R. & Herrera-Estrella, A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196, 109–123 (2015).

    Article 

    Google Scholar
     

  • Rouphael, Y. et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196, 91–108 (2015).

    Article 

    Google Scholar
     

  • Kabała, C. & Karczewska, A. Metodyka analiz laboratoryjnych gleb i roślin (Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk o Glebie i Ochrony Środowiska, 2019).


    Google Scholar
     

  • Ostrowska, A., Porębska, G., Borzyszkowski, J., Król, H. & Gawliński, S. Właściwości gleb leśnych i metody ich oznaczania (Instytut Ochrony Środowiska, 2001).


    Google Scholar
     

  • Schmidt, P.-A. et al. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 65, 128–132 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Vilgalys, R. & Gonzalez, D. Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Curr. Genet. 18, 277–280 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behnke-Borowczyk, J., Kwaśna, H. & Kulawinek, B. Fungi associated with Cyclaneusma needle cast in Scots pine in the west of Poland. For. Pathol. 49, e12487 (2019).

    Article 

    Google Scholar
     

  • Gweon, H. S. et al. PIPITS: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. 111, 16219–16224 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12073 (2013).

    Article 

    Google Scholar
     

  • Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rambold, G. & Agerer, R. DEEMY—The concept of a characterization and determination system for ectomycorrhizae. Mycorrhiza 7, 113–116 (1997).

    Article 

    Google Scholar
     

  • Magurran, A. E. Ecological Diversity and Its Measurement (Springer, 1988).

    Book 

    Google Scholar
     

  • Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozo, P. & Säumel, I. How to bloom the green desert: Eucalyptus plantations and native forests in Uruguay beyond black and white perspectives. Forests 9, 614 (2018).

    Article 

    Google Scholar
     

  • Chapman, M. & Underwood, A. Ecological patterns in multivariate assemblages: Information and interpretation of negative values in ANOSIM tests. Mar. Ecol. Prog. Ser. 180, 257–265 (1999).

    Article 

    Google Scholar
     

  • Somerfield, P. J., Clarke, K. R. & Gorley, R. N. Analysis of similarities (ANOSIM) for 2-way layouts using a generalised ANOSIM statistic, with comparative notes on permutational multivariate analysis of variance (PERMANOVA). Austral. Ecol. 46, 911–926 (2021).

    Article 

    Google Scholar
     

  • De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).

    Article 

    Google Scholar
     



  • Source link